Illustration using example data
This example reads in centered_ipd_twt
data that was
created in calculating_weights
vignette and uses
adrs_twt
dataset to run binary outcome analysis using the
maic_anchored
function by specifying
endpoint_type = "binary"
.
data(centered_ipd_twt)
data(adrs_twt)
centered_colnames <- c("AGE", "AGE_SQUARED", "SEX_MALE", "ECOG0", "SMOKE", "N_PR_THER_MEDIAN")
centered_colnames <- paste0(centered_colnames, "_CENTERED")
weighted_data <- estimate_weights(
data = centered_ipd_twt,
centered_colnames = centered_colnames
)
# get dummy binary IPD
pseudo_adrs <- get_pseudo_ipd_binary(
binary_agd = data.frame(
ARM = c("B", "C", "B", "C"),
RESPONSE = c("YES", "YES", "NO", "NO"),
COUNT = c(280, 120, 200, 200)
),
format = "stacked"
)
result <- maic_anchored(
weights_object = weighted_data,
ipd = adrs_twt,
pseudo_ipd = pseudo_adrs,
trt_ipd = "A",
trt_agd = "B",
trt_common = "C",
normalize_weight = FALSE,
endpoint_type = "binary",
endpoint_name = "Binary Endpoint",
eff_measure = "OR",
# binary specific args
binary_robust_cov_type = "HC3"
)
There are two summaries available in the result: descriptive and inferential. In the descriptive section, we have summaries of events.
result$descriptive
## $summary
## trt_ind treatment type n events events_pct
## 1 C C IPD, before matching 500 338.0000 67.60000
## 2 A A IPD, before matching 500 390.0000 78.00000
## 3 C C IPD, after matching 500 131.2892 26.25784
## 4 A A IPD, after matching 500 142.8968 28.57935
## 5 C C AgD, external 320 120.0000 37.50000
## 6 B B AgD, external 480 280.0000 58.33333
In the inferential section, we have the fitted models stored
(i.e. logistic regression) and the results from the glm
models (i.e. odds ratios and CI).
result$inferential$summary
## case OR LCL UCL pval
## 1 AC 1.6993007 1.2809976 2.2541985 2.354448e-04
## 2 adjusted_AC 1.3119021 0.8210000 2.0963303 2.562849e-01
## 3 BC 2.3333333 1.7458092 3.1185794 1.035032e-08
## 4 AB 0.7282717 0.4857575 1.0918611 1.248769e-01
## 5 adjusted_AB 0.5622438 0.3239933 0.9756933 4.061296e-02
Here are model and results before adjustment.
result$inferential$fit$model_before
##
## Call: glm(formula = RESPONSE ~ ARM, family = glm_link, data = ipd)
##
## Coefficients:
## (Intercept) ARMA
## 0.7354 0.5302
##
## Degrees of Freedom: 999 Total (i.e. Null); 998 Residual
## Null Deviance: 1170
## Residual Deviance: 1157 AIC: 1161
result$inferential$fit$res_AC_unadj
## $est
## [1] 1.699301
##
## $se
## [1] 0.2488482
##
## $ci_l
## [1] 1.280998
##
## $ci_u
## [1] 2.254199
##
## $pval
## [1] 0.0002354448
result$inferential$fit$res_AB_unadj
## result pvalue
## "0.73[0.49; 1.09]" "0.125"
Here are model and results after adjustment.
result$inferential$fit$model_after
##
## Call: glm(formula = RESPONSE ~ ARM, family = glm_link, data = ipd,
## weights = weights)
##
## Coefficients:
## (Intercept) ARMA
## 0.6559 0.2715
##
## Degrees of Freedom: 999 Total (i.e. Null); 998 Residual
## Null Deviance: 495.5
## Residual Deviance: 493.9 AIC: 454.5
result$inferential$fit$res_AC
## $est
## [1] 1.311902
##
## $se
## [1] 0.3275028
##
## $ci_l
## [1] 0.821
##
## $ci_u
## [1] 2.09633
##
## $pval
## [1] 0.2562849
result$inferential$fit$res_AB
## result pvalue
## "0.56[0.32; 0.98]" "0.041"
Using bootstrap to calculate standard errors
If bootstrap standard errors are preferred, we need to specify the
number of bootstrap iteration (n_boot_iteration
) in
estimate_weights
function and proceed fitting
maic_anchored
function. Then, the outputs include
bootstrapped CI. Different types of bootstrap CI can be found by using
parameter boot_ci_type
.
weighted_data2 <- estimate_weights(
data = centered_ipd_twt,
centered_colnames = centered_colnames,
n_boot_iteration = 100,
set_seed_boot = 1234
)
result_boot <- maic_anchored(
weights_object = weighted_data2,
ipd = adrs_twt,
pseudo_ipd = pseudo_adrs,
trt_ipd = "A",
trt_agd = "B",
trt_common = "C",
normalize_weight = FALSE,
endpoint_type = "binary",
endpoint_name = "Binary Endpoint",
eff_measure = "OR",
boot_ci_type = "perc",
# binary specific args
binary_robust_cov_type = "HC3"
)
result_boot$inferential$fit$boot_res_AB
## $est
## [1] 0.5622438
##
## $se
## [1] NA
##
## $ci_l
## [1] 0.3228615
##
## $ci_u
## [1] 0.9791133
##
## $pval
## [1] NA