This function checks to see if the optimization is done properly
by checking the covariate averages before and after adjustment.
In case of ties when calculating median,
we return the mean of the two numbers. For more details,
see ties parameter in matrixStats::weightedMedian.
Arguments
- weighted_data
- object returned after calculating weights using - estimate_weights
- processed_agd
- a data frame, object returned after using - process_agdor aggregated data following the same naming convention
- x
- object from check_weights 
- mean_digits
- number of digits for rounding mean columns in the output 
- prop_digits
- number of digits for rounding proportion columns in the output 
- sd_digits
- number of digits for rounding mean columns in the output 
- digits
- minimal number of significant digits, see print.default. 
- ...
- further arguments to print.data.frame 
Value
data.frame of weighted and unweighted covariate averages of the IPD, average of aggregate data, and sum of inner products of covariate \(x_i\) and the weights (\(exp(x_i\beta)\))
Examples
data(weighted_sat)
data(agd)
check_weights(weighted_sat, process_agd(agd))
#>   covariate match_stat internal_trial internal_trial_after_weighted
#> 1       AGE       Mean         59.850                         51.00
#> 2       AGE     Median         59.000                         49.00
#> 3       AGE         SD          9.011                          3.25
#> 4  SEX_MALE       Prop          0.380                          0.49
#> 5     ECOG0       Prop          0.410                          0.35
#> 6     SMOKE       Prop          0.320                          0.19
#>   external_trial sum_centered_IPD_with_weights
#> 1          51.00                        0.0000
#> 2          49.00                        0.0000
#> 3           3.25                       -0.0045
#> 4           0.49                        0.0000
#> 5           0.35                        0.0000
#> 6           0.19                        0.0000