This function checks to see if the optimization is done properly
by checking the covariate averages before and after adjustment.
In case of ties when calculating median,
we return the mean of the two numbers. For more details,
see ties
parameter in matrixStats::weightedMedian.
Arguments
- weighted_data
object returned after calculating weights using
estimate_weights
- processed_agd
a data frame, object returned after using
process_agd
or aggregated data following the same naming convention- x
object from check_weights
- mean_digits
number of digits for rounding mean columns in the output
- prop_digits
number of digits for rounding proportion columns in the output
- sd_digits
number of digits for rounding mean columns in the output
- digits
minimal number of significant digits, see print.default.
- ...
further arguments to print.data.frame
Value
data.frame of weighted and unweighted covariate averages of the IPD, average of aggregate data, and sum of inner products of covariate \(x_i\) and the weights (\(exp(x_i\beta)\))
Examples
data(weighted_sat)
data(agd)
check_weights(weighted_sat, process_agd(agd))
#> covariate match_stat internal_trial internal_trial_after_weighted
#> 1 AGE Mean 59.850 51.00
#> 2 AGE Median 59.000 49.00
#> 3 AGE SD 9.011 3.25
#> 4 SEX_MALE Prop 0.380 0.49
#> 5 ECOG0 Prop 0.410 0.35
#> 6 SMOKE Prop 0.320 0.19
#> external_trial sum_centered_IPD_with_weights
#> 1 51.00 0.0000
#> 2 49.00 0.0000
#> 3 3.25 -0.0045
#> 4 0.49 0.0000
#> 5 0.35 0.0000
#> 6 0.19 0.0000