This function checks to see if the optimization is done properly by checking the covariate averages before and after adjustment.
Arguments
- weighted_data
object returned after calculating weights using
estimate_weights
- processed_agd
a data frame, object returned after using
process_agd
or aggregated data following the same naming convention- x
object from check_weights
- mean_digits
number of digits for rounding mean columns in the output
- prop_digits
number of digits for rounding proportion columns in the output
- sd_digits
number of digits for rounding mean columns in the output
- digits
minimal number of significant digits, see print.default.
- ...
further arguments to print.data.frame
Value
data.frame of weighted and unweighted covariate averages of the IPD, average of aggregate data, and sum of inner products of covariate \(x_i\) and the weights (\(exp(x_i\beta)\))
Examples
data(weighted_sat)
data(agd)
check_weights(weighted_sat, process_agd(agd))
#> covariate match_stat internal_trial internal_trial_after_weighted
#> 1 AGE Mean 59.850 51.00
#> 2 AGE Median 59.000 49.00
#> 3 AGE SD 9.011 3.25
#> 4 SEX_MALE Prop 0.380 0.49
#> 5 ECOG0 Prop 0.410 0.35
#> 6 SMOKE Prop 0.320 0.19
#> external_trial sum_centered_IPD_with_weights
#> 1 51.00 0.0000
#> 2 49.00 0.0000
#> 3 3.25 -0.0045
#> 4 0.49 0.0000
#> 5 0.35 0.0000
#> 6 0.19 0.0000